Home > General Transformer Information > POWER TRANSFORMERS – PART 1:

POWER TRANSFORMERS – PART 1:

April 29th, 2009

By Larry Dahlgren

 

So someone told you should obtain a transformer.

 

Before you open your wallet and buy the first transformer you meet, let’s consider the situation a bit.

Dry Type Transformer

Buy Dry Type Transformers

You might have just moved your equipment to a new facility and the new location seems to be electrically different from your former location.  You do not see the familiar types of disconnects and plugs your former location had or your machines used to be hard wired and now, at their new home, you have a collection of machines with pigtail wires and you are unsure where to connect them.  Maybe you just picked up a spare to one of your existing machines or added a machine because there are many available at auction.

  

You get them to your shop and now find the nameplate voltage is different than your building voltage.

 

 

A.        AVAILABLE VOLTAGE

Is the actual voltage at the new location any different from the old location?

It could be the same and it might just be referred to by some other name.

Maybe that machine you just picked up at the fire sale has a voltage tolerance that will mean it can work just fine on your available supply.

 

Consider this single phase example:

There are those who refer to the voltage that comes from a typical wall outlet as 120 Volts.  A generation ago that same voltage used to be called 115 Volts or 110 Volts.

 

Today the do-it yourselfer may connect an electric water heater or electric dryer or range to 240 Volts from a breaker fed from both sides of the common household circuit breaker cabinet.  Thirty years ago the water heaters were connected across 230 Volts from both sides of the fuse box if the thinking is that the wall outlets were good for 115 Volts.  Maybe that water heater used to be wired to 220 Volts coming from both sides of the fuse box that powered all of the 110 Volt outlets. 

 

This can become complicated even more in multi family buildings, served by the utility with 208Y/120 volts, where each unit is served from two hot legs and the neutral.  In that case the wall outlets are still at 120 Volts but there is only 208 Volts between the two hot legs so the dryer and water heater are fed from 208 Volts.  Trouble is, a lot of folks just say the specialty socket for the stove or range has 220 Volts and then you have to investigate further and measure safely so you know the actual voltage that is present.

 

The same type of confusion can extend into the three-phase industrial setting. 

 

People refer to one type of nominal, three phase, three wire voltage as 440, 460 or 480 Volts.  Some refer to another type of nominal, three phase, three wire voltage as 220, 230 or 240 Volts.

 

The two, common, three phase, four wire, nominal voltages are 480Y/277 Volts and 208Y/120 volts.

 

Measuring (safely) you may discover that the actual voltage, over time, could vary above and below these nominal values.  The voltage at times could reach as high as 504 Volts or drop to only 456 volts.  Other times the 240 Volt nominal voltage could swing as high as 252 Volts or as low as 228 Volts.  Watch out because occasionally 208 volts can swing as high as 218 Volts.  You are then left to wonder if a measurement of 216 Volts could mean a stiff 208 Volt system or a very soggy 240 Volt system.  Determining the actual voltage and the nominal voltage are critical in the selection of a transformer. 

 

The same holds true for your wall outlets where the acceptable voltage, according to your local power company, can swing from 95% of 120 volts (114 volts) to 105% of 120 Volts (126 volts).  Should the voltage drops to 90% of 120 Volts (108 Volts), call your power company.  

 

Hey 114 Volts is only a volt shy of 115 Volts.  This means your parents were right again; this time about wall outlets.

 

Next time we will discuss the equipment you energize with the voltage you have.

 

See Part 2

 

Good Luck, be safe and happy transforming.

  1. J. David Cuttrell
    September 2nd, 2009 at 01:09 | #1

    I have Edison site power of 120/208V, 3 phase @ 1200 amps and a 15 KVA Westinghouse EPT transformer (style #Y48D28T15E). I need 3-phase 480V to run 3 Big Ass fans. The wiring diagram is unreadable – almost… I think it says that I connect X1, X2 & X3 to the 208V 3-phase 50-amp breaker (not using the neutral) and will get the 480V by taking #2 & #5 tied together to #10 load side feeders for each of the legs (H1, H2, H3) and capping off the other taps(each phase has 5 tap wires0. Before I blow myself up does that sound correct? I would appreciate advice, thank you.

  2. September 15th, 2009 at 09:54 | #2

    Dear Mr. Cuttrell:

    We do not happen to have this exact transformer in stock so we are answering based on other transformer we encounter.

    From your message, the seconday connections are legible and you already know where you will be connecting the building’s three hot wires, to the transfomer at X1, X2 and X3.

    The three primary coils are usually already pre-wired from the factory and connected in Delta, at the nominal voltage, in your case 480V.

    This could be H1, H2 and H3 referring to a similar Westinghouse transformer we have in stock. These points would form the three corners of the triangle or Delta and be the locations where you would take off the 480 Volts needed for your load.

    Other connections on each phase coil are the primary taps that were below nominal (on our particular Westinghouse transformer) and would be may be in the form of a terminal or discrete wires brought out from the coil. These can be covered or capped off as they would not be needed.

    Make any and all connections to the transformer while all possible power sources to the transformer have been removed. Always wear safety glasses when you energize the transformer.

    Again please be careful.

    Respectfully,

    Larry V. Dahlgren
    Electrical Power Engineer
    MIDWEST
    414.931.0992 / 414.461.8485 Fax
    larryd@swgr.com

Comments are closed.